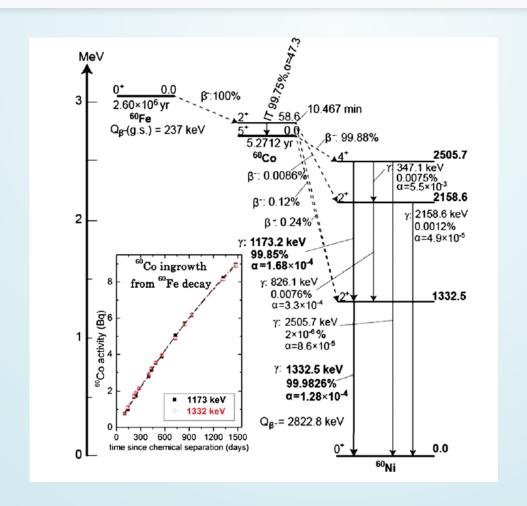

深海に刻まれた超新星爆発の痕跡

海底探査が解き明かす宇宙の『泡』の起源

自己紹介

- さめ (мег-сск)
 - VRChat**物理学集会の主** 催
 - 社会人学生として通信制 大学在学中
- 得意分野:
 - ■ コンピュータビジョン (画像認識/点群処理)
 - 空間情報処理 (地理情報/リモートセンシング)
 - **クラウドインフラ設** 計/IaC (AWS, GCP)
- GitHub
- YouTube
- Speaker Deck

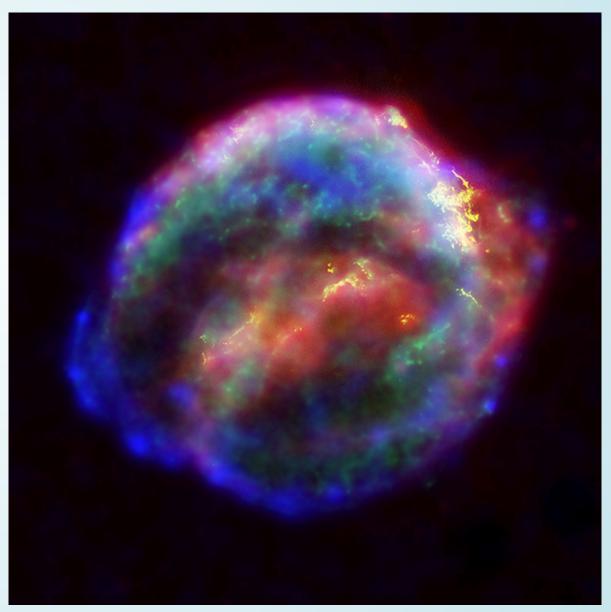

今日話すこと

- 海底から採取された試料に含まれる放射性同位体 が数百万年前に起きた超新星爆発を示唆
 - 鉄60は地球に天然では存在しない
 - 超新星爆発する直前の大質量星の内部で生成される
 - 海底から採取された試料に鉄60が含まれること から、数100万年前に起きた超新星爆発を示唆
 - 激レアな放射性同位体の鉄60の半減期をどう測った?

鉄60とは何か?

鉄60 (⁶⁰FE) の基本的性質

- 放射性同位体: 半減期 260万年
- 宇宙でのみ生成: 大質量星の内部で生成
- β-崩壊: ⁶⁰Fe → ⁶⁰Co → ⁶⁰Ni + γ崩壊
 - ⁶⁰Niのy線から間接的に観測



Credit: Wallner et al. PRL 114, 041101 (2015)

鉄60はどこで作られる?

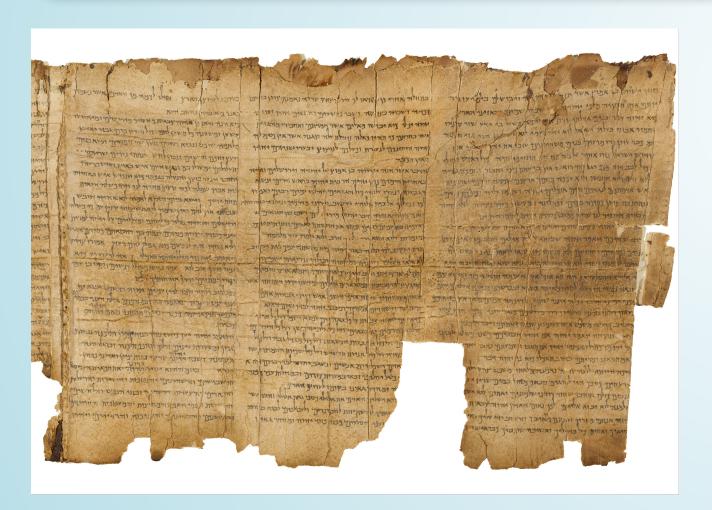
大質量星の内部

- 太陽の8~25倍の質量
- 高温・高密度の中性子過剰環境
- ⁵⁸Feの二重中性子捕獲で生成
- 超新星爆発で宇宙空間に放出

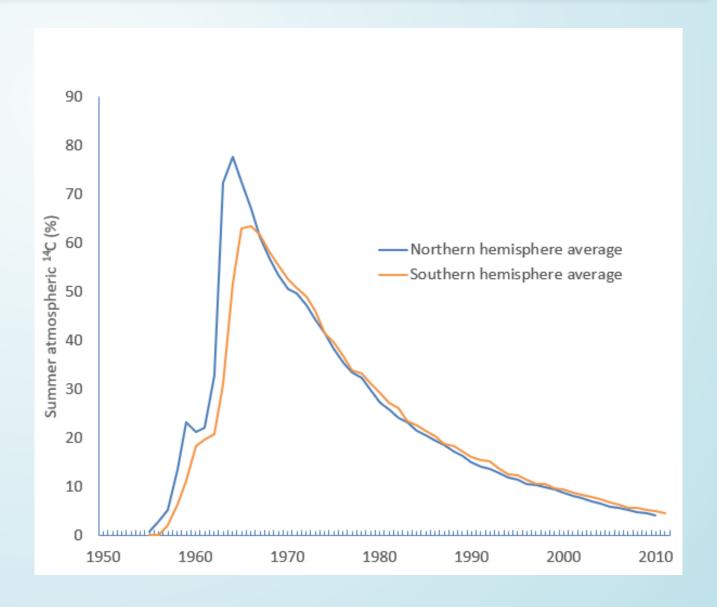
ケプラーの超新星 (1604年)

地球に存在する鉄60

- インド洋、太平洋、大西洋で採取された深海堆積物から鉄60が検出
- どこからどのように、いつ地球にやってきた?



深海堆積物の採取を行ったEltanin調査船。1962-74年に活動


鉄60の半減期測定

なぜ半減期測定が重要?

- 試料の年代決定に重要!
- 炭素14は考古学史料の年代測定に利用されている
 - 炭素14の放射能から年代を推定

死海文書は炭素14年代測定法で紀元前の 史料だと立証された!

なぜ鉄60の半減期測定は困難?

- ullet $t_{1/2} > 100万年という長半減期$
- ・極微量の試料

- 半減期が長くても大量にあれば測れる
- 微量でも半減期が短いなら測れる
- 半減期が長くて微量な同位体は測定困難!

鉄60の人工合成

- 天然には存在しないので人工的に大量合成
- 銅へのプロトン照射による核反応で合成
- 濃度:⁶⁰Fe/Fe ~ 10⁻⁴~10⁻⁸

- ⁶³Cu + p (191-590 MeV) → ⁶⁰Fe + 副産物
- ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe, ⁶⁰Co... などの副産物

副産物による妨害

問題1:y線スペクトルがノイズだらけ

- 目的:⁶⁰Co→⁶⁰Niのy線(1173, 1332 keV)を測定
- 妨害:副産物の核種からの大量y線
- 砂短期間で大量のy線を出すので危険

問題2: 60 Coも生成される

- 目的: ⁶⁰Fe→⁶⁰Co→⁶⁰Niを観測したい
- 妨害: ⁶⁰Feの崩壊で生成されたものなのか、プロトン照射で生成されたものなのか区別できない

副産物への対策

解決策その1:長期間冷却で副産物除去

- 1-12年の放置で短半減期核種が自然消滅
- ⁵⁷Co (272日), ⁵⁸Co (71日), ⁵⁹Fe (44日)

解決策その2:化学分離

- ⁶⁰Coは⁶⁰Feは異なる元素なので化学的に分離可能
- 先に冷却期間を設けて短半減期の核種を減らすことで、このプロセスが実行不可能

鉄60の半減期測定

2015年研究 (Wallner et al.)

手法: ⁶⁰Fe/⁵⁵Fe の相対測定

• 革新:両方とも放射性核種で同条件測定

• 利点:系統誤差のキャンセル効果

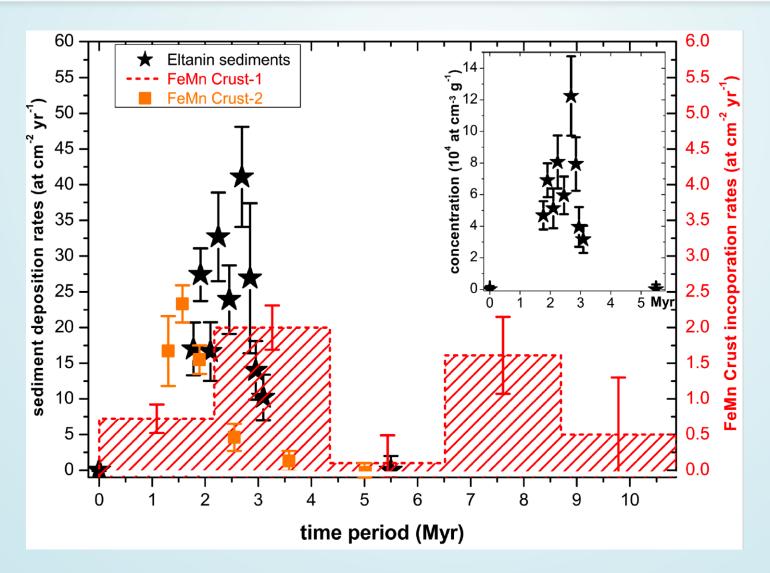
• 結果: (2.50 ± 0.12) × 10⁶年

炭素14年代測定法との類似

炭素14年代測定法との類似

- ¹⁴C/¹²C比測定 → 既知の基準との比較 (大気中の¹⁴C 濃度の変動を除去)
 - 化石燃料の燃焼や核実験の影響
- ⁶⁰Fe/⁵⁵Fe比測定 → 既知半減期(⁵⁵Fe: 2.744年)との 比較
 - 同じ加速器加速器質量分析装置(AMS)で分離

相対測定法の革新性


なぜ画期的だったか?

- 同じ検出器: 両核種とも同じAMSで測定
- 同じ測定条件: ビーム強度変動などが相殺
- 比較基準があることで系統誤差をキャンセルできる!

深海堆積物が語る超新星爆発

深海探査からの発見

- ・ 深海堆積物から鉄60が検出
- 1.7-3.2百万年前と6.5-8.7百万年前に2つのピーク

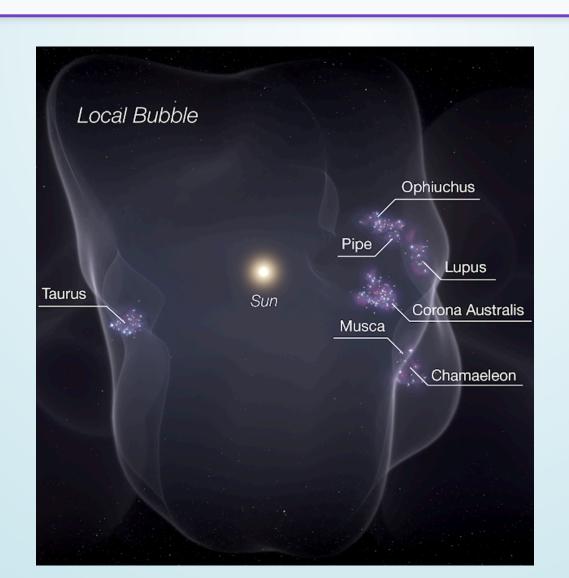
Credit: Wallner et al. Nature. 2016 April 7; 532(7597): 69-72.

全球規模の分布

- ・世界中の海洋で検出
 - インド洋、太平洋、大西洋のすべての深海堆積物から検出
 - 地球規模の現象: 地球全域での分布
- 150万年間にわたるピークの分布
 - 継続的なイベント発生の示唆
 - 隕石起源ではない: 宇宙塵では説明できない量
 - 星間起源: 超新星爆発による星間物質

複数超新星說

観測事実


- 150万年の長期間にわたる流入
- 単一超新星では説明困難

解釈

- 連続的超新星爆発: 2-3個/百万年
- 局所泡構造: 過去1400万年の超新星爆発で形成された?

局所泡

- 太陽系は星間物質がとても少ない「泡」の中
- 超新星爆発で泡が形成された?
- 扇風機で砂を吹くと、スカスカの領域を囲う砂の 壁ができるイメージ

まとめ

- 鉄60の半減期測定: 微量かつ長半減期
 - 微量の放射性同位体、鉄60の半減期は、半減期が既知の同位体、鉄55との比較によって測定された
- ・世界中の深海堆積物から鉄60が検出
 - 深海堆積物に含まれる鉄60は過去1400万年の間 に起きた超新星爆発を示唆
 - 鉄60の地球への流入は150万年続いた?
 - 局所泡の形成過程の手がかり?
- 海底探索から大昔の天文現象を理解できる!

主要参考文献

- Wallner et al., Settling the Half-Life of ⁶⁰Fe: Fundamental for a Versatile Astrophysical Chronometer, PRL 114, 041101 (2015)
 - DOI: 10.1103/PhysRevLett.114.041101
- Wallner et al., Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60 Fe, Nature. 2016 April 7; 532(7597): 69–72.
 - DOI: 10.1038/nature17196