

自作CPUの始め方

CS集会 #18 @VRChat 2024-01-30

夜鍋ヨナ-yonabeyona <<u>http://x.com/yonabeyona</u>>

自己紹介

- 名前: 夜鍋 ヨナ(よなべ よな)
- X(Twitter) : yonabeyona
- Discord : yona_47
- その他
 - 。 ComputerScienceが好き
 - 。 数学勉強中
 - ∘ 物理も勉強中
 - CS集会(隔週火曜日グループA)の主催

そもそもCPU作るってどっち?

CPUを作るの3つの意味

- アーキテクチャ(特定の命令セットが動作するシステム)の設計
- 製造装置で作るための情報を作成して発注
- CPUのICチップを工場で**製造**

自作CPUの始め方(製造編)

前工程(シリコンから回路を焼きつけるまで)

- 1. シリコンインゴッドを作ってウエハ切り出し
- 2. いろんな膜を作る
- 3. フォトリソグラフィ
- 4. 不純物導入してN型P型を作る

後工程(ウエハから出荷まで)

- 1. ダイシング
- 2. マウント
- 3. ボンディング
- 4. 封入 / 検査 / 出荷

自作CPUの始め方(製造編)

前工程(シリコンから回路を焼きつけるまで)

- 1. シリコンインゴッドを作ってウエハ切り出し
- 2. いろんな膜を作る
- 3. フォトリソグラフィ
- 4. 不純物導入してN型P型を作る

後工程(ウエハから出荷まで)

- 1. ダイシング
- 2. マウント
- 3. ボンディング
- 4. 封入 / 検査 / 出荷

シリコン鉱山からインゴッドまで

シリコンは地球上にケイ石 SiO_2 の状態で自然界に存在している。 地殻中の元素比率は26.77%であり、酸素についで2番めに多い。

酸素と結合した鉱石の形で存在しているので、還元と微細化を行う。 炭素やグラファイトで還元し、砕いた後塩酸に溶かして、トリクロシラン($SiHCl_3$)にする トリクロシランを熱分解して多結晶Siにする。

多結晶SiをCZ法(Czochralski法)やFZ法(floating zone法)を用いて、 99.999 999 999 %以上の純度のインゴッド完成 9が11個でイレブンナインって呼ばれてる (ゲルマニウムはなら9が9個ならぶっぽい)

これを薄く切り出して円盤状にしたものがウェーハと呼ばれる

余談

ウェハ?ウェファ?ウエーハー?

 $\dot{D}(x|X) - ?(N|D(x|Y)) - ?$

業界内で統一されてないらしく、表記方法によって所属する会社がバレるらしい

ウエハ洗浄

ウエハ上には色々乗ってほしくない、目に見えない小さいゴミがある これを綺麗にするために色々あらう

- 金属片
- イオン
- 有機物
- 無機物

主な洗浄方法

洗浄名	薬液	使い時
APM洗浄	NH_4 / H_2O_2 / H_2O	有機物を洗浄
FPM洗浄	HF / H_2O_2 / H_2O	金属、自然酸化膜の除去
HPM洗浄	$HCl/H_2O_2/H_2O$	金属の除去
SPM洗浄	H_2SO_4/H_2O_2	金属、有機物の除去
DHF洗浄	HF/H_2O	金属、自然酸化膜の除去
BHP洗浄	$HF/NH_4/H_2O$	自然酸化膜の除去

ちなみにここで使う水もフィルターかけまくってゴミとイオンを除去している

酸化膜を作る

これ以降はその内……